In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase.

نویسندگان

  • Atsuko Kanazawa
  • David M Kramer
چکیده

Nonphotochemical quenching (NPQ) of excitation energy, which protects higher plant photosynthetic machinery from photodamage, is triggered by acidification of the thylakoid lumen as a result of light-induced proton pumping, which also drives the synthesis of ATP. It is clear that the sensitivity of NPQ is modulated in response to changing physiological conditions, but the mechanism for this modulation has remained unclear. Evidence is presented that, in intact tobacco or Arabidopsis leaves, NPQ modulation in response to changing CO(2) levels occurs predominantly by alterations in the conductivity of the CF(O)-CF(1) ATP synthase to protons (g(H)(+)). At a given proton flux, decreasing g(H)(+) will increase transthylakoid proton motive force (pmf), thus lowering lumen pH and contributing to the activation of NPQ. It was found that an approximately 5-fold decrease in g(H)(+) could account for the majority of NPQ modulation as atmospheric CO(2) was decreased from 2,000 ppm to 0 ppm. Data are presented that g(H)(+) is kinetically controlled, rather than imposed thermodynamically by buildup of DeltaG(ATP). Further results suggest that the redox state of the ATP synthase gamma-subunit thiols is not responsible for altering g(H)(+). A working model is proposed wherein g(H)(+) is modulated by stromal metabolite levels, possibly by inorganic phosphate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants.

In plants, the major route for dissipating excess light is the nonphotochemical quenching of absorbed light (NPQ), which is associated with thylakoid lumen acidification. Our data offer an interpretation for the complex relationship between changes in luminal pH and the NPQ response. Upon steady-state illumination, fast NPQ relaxation in the dark reflects the equilibration between the electroch...

متن کامل

A kinetic model of rapidly reversible nonphotochemical quenching.

Oxygen-evolving photosynthetic organisms possess nonphotochemical quenching (NPQ) pathways that protect against photo-induced damage. The majority of NPQ in plants is regulated on a rapid timescale by changes in the pH of the thylakoid lumen. In order to quantify the rapidly reversible component of NPQ, called qE, we developed a mathematical model of pH-dependent quenching of chlorophyll excita...

متن کامل

The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expre...

متن کامل

A bestrophin‐like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis

During photosynthesis, photosynthetic electron transport generates a proton motive force (pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential (ΔΨ) and an osmotic component (ΔpH). Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments. ...

متن کامل

Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting.

Nonphotochemical quenching (NPQ) refers to a process that regulates photosynthetic light harvesting in plants as a response to changes in incident light intensity. By dissipating excess excitation energy of chlorophyll molecules as heat, NPQ balances the input and utilization of light energy in photosynthesis and protects the plant against photooxidative damage. To understand the physical mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 20  شماره 

صفحات  -

تاریخ انتشار 2002